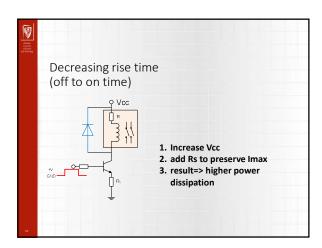
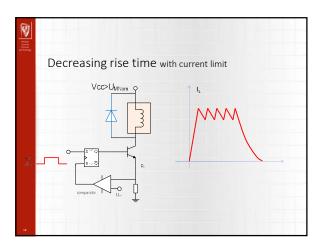
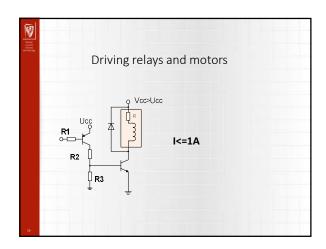
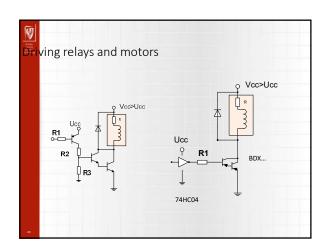
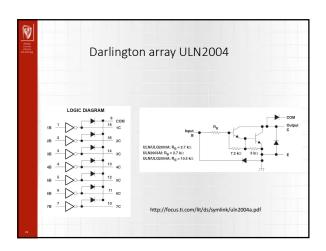

Bode Committee Committee Committee of Marchage	Ohm's low for inductance
	$U_L = L \frac{dI}{dt}$ $U_L = X_L I_L = \frac{1}{i\omega C} I_L$
	TIPS: •higher voltage applied – faster changes of current •fast changes in current – higher voltage induced •when current change "slope direction" – voltage change polarity:
	 positive voltage applied – current increased current decreased – negative voltage induced

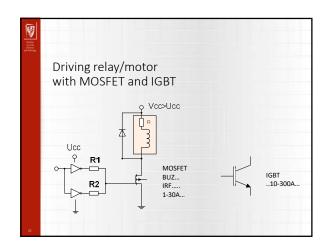


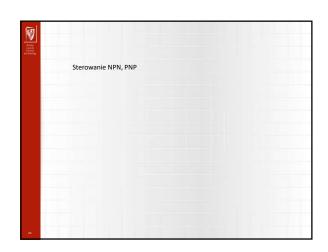


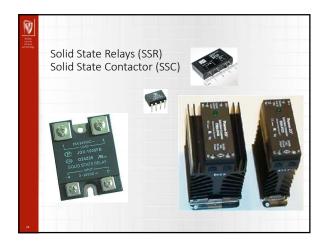


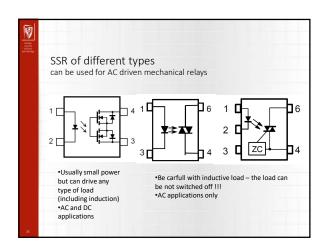


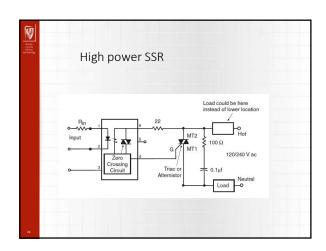


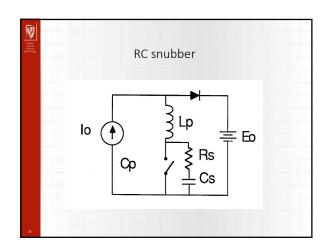


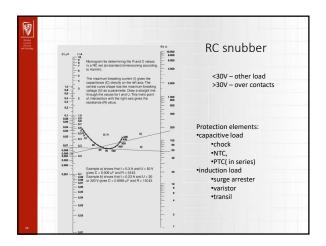


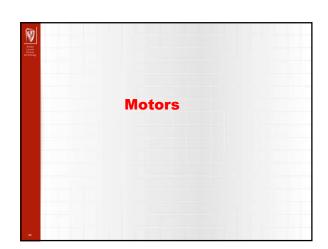


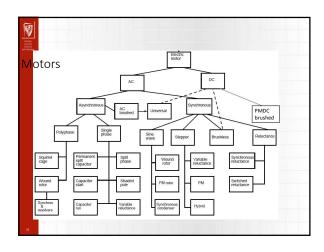


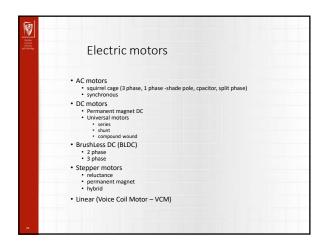


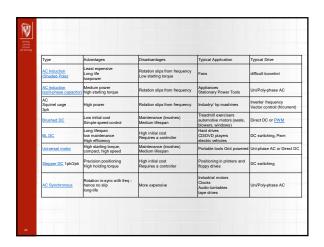


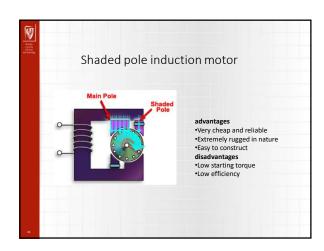


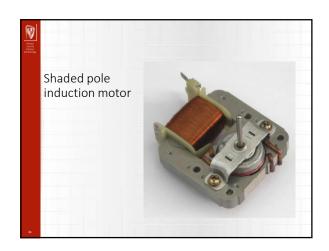


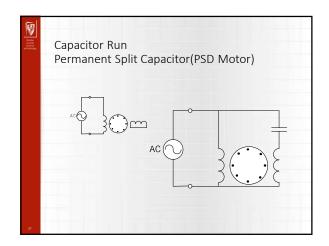


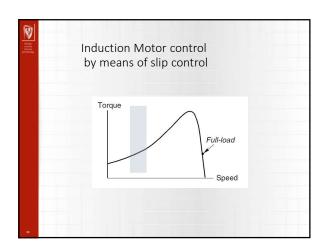

Absolute maximum ratings				
Parameter	Symbol	Value	Unit	Test condition
peak repetitive off-stage voltage	V _{DRM} , V _{RRM}	600	V	
on-state RMS current	I _T (RMS)	4	Α	TL≤66°C
NON repetitive surge peak on-state current	I _{TSM}	25	Α	Tp=20ms, Tj=25 °C
critical rate of rise on-state current	dl/dt (Q ₁₋₃)	50	A/μs	I _{TM} =20A, T _G =0.2A
peak gate current	I _{GM}	2	A	
average gate power dissipation	P _G (AV)	0.5	W	
storage temperature range	Tstg	-40 to +150	°C	
operating junction temperature range	Ti	125	°C	
Electrical characteristics (Tj=25°C) unless other				
Parameter	Symbol	Value	Unit	Test condition
	Symbol	Value ≤10	Unit mA	Test condition T2+G+ V _D =12V, I _T =0.1
		1.0.00		T2+G+ V _D =12V, I _T =0.1 T2+G- V _D =12V, I _T =0.1
		≤10 ≤10 ≤10	mA mA	T2+G+ V _D =12V, I _T =0.1 T2+G- V _D =12V, I _T =0.1 T2-G- V _D =12V, I _T =0.1
gate trigger current	lgt	≤10 ≤10 ≤10 ≤25	mA mA mA	T2+G+ V _D =12V, I _T =0.1 T2+G- V _D =12V, I _T =0.1 T2-G- V _D =12V, I _T =0.1 T2-G+ V _D =12V, I _T =0.1
gate trigger current gate trigger voltage	I _{GT}	≤10 ≤10 ≤10 ≤25 ≤1.5	mA mA	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
gate trigger current gate trigger voltage	lgt	≤10 ≤10 ≤10 ≤25	mA mA mA	$ \begin{aligned} &T2+G+ &V_0=12V, \ I_7=0.1\\ &T2+G- &V_0=12V, \ I_7=0.1I, \\ &T2-G- &V_0=12V, \ I_7=0.1I, \\ &T2-G+ &V_0=12V, \ I_7=0.1I, \\ &V_0=12V, \ I_7=0.1A, \\ &V_0=12V, \ I_7=0.1A, \end{aligned} $
gate trigger current gate trigger voltage hold current	I _{GT}	≤10 ≤10 ≤10 ≤25 ≤1.5	mA mA mA V	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
gate trigger current gate trigger voltage hold current critical rate of rise off-state voltage	I _{GT} V _{GT} I _H	≤10 ≤10 ≤10 ≤25 ≤1.5 ≤30	mA mA mA V mA	$ \begin{aligned} &T2+G+ &V_0=12V, \ I_7=0.1\\ &T2+G- &V_0=12V, \ I_7=0.1I, \\ &T2-G- &V_0=12V, \ I_7=0.1I, \\ &T2-G+ &V_0=12V, \ I_7=0.1I, \\ &V_0=12V, \ I_7=0.1A, \\ &V_0=12V, \ I_7=0.1A, \end{aligned} $
gate trigger current gate trigger voltage hold current critical rate of rise off-state voltage on-state voltage	I _{GT} V _{GT} I _H dv/dt	≤10 ≤10 ≤10 ≤10 ≤25 ≤1.5 ≤30	mA mA mA MA V mA V/µs	T2+G+ V _D =12V, I _T =0.1 T2+G- V _D =12V, I _T =0.1 T2-G- V _D =12V, I _T =0.1 T2-G- V _D =12V, I _T =0.1 V _D =12V, I _T =0.1A V _D =12V, I _T =0.1A V _D =67%V _{DRM}
gate trigger current gate trigger voltage paid trigger voltage hold current critical rate of rise off-state voltage on-state voltage off-state leakage current thermal resistance	V _{GT} I _H dv/dt V _{TM}	≤10 ≤10 ≤10 ≤25 ≤1.5 ≤30 ≥50 ≤1.7	mA mA mA V mA V/µs	T2+G+ V ₀ =12V, I ₁ =0.1 T2+G- V ₀ =12V, I ₁ =0.1 T2-G- V ₀ =12V, I ₁ =0.1 T2-G+ V ₀ =12V, I ₁ =0.1 V ₀ =12V, I ₁ =0.1 V ₀ =12V, I ₁ =0.1A V ₀ =67%V ₀ MM I ₁ =5A

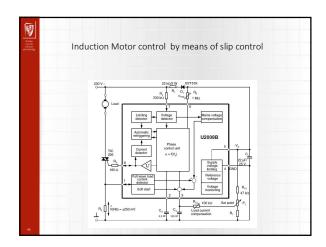


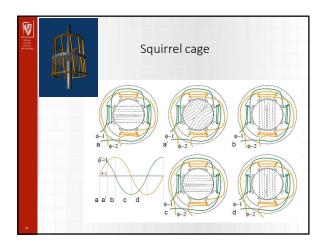


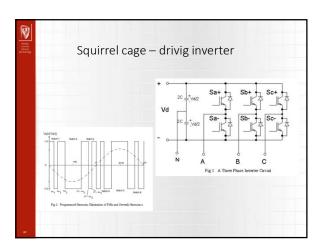


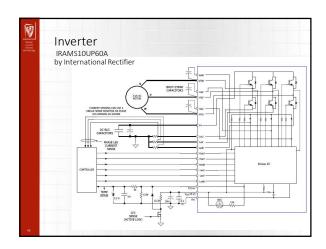


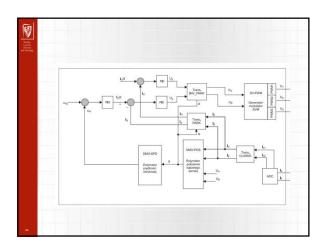

Туре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction (Shaded Pole)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
AC Induction (split-phase capacitor)	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 3ph	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/cu
Brushed DC	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Din
Stepper DC 1ph/2ph	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
AC Synchronous	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

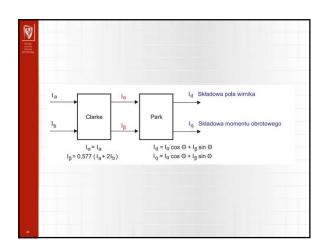


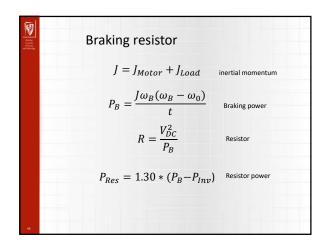


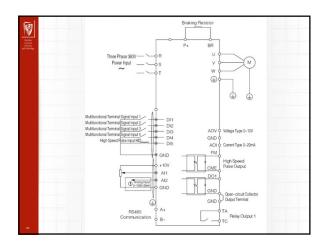


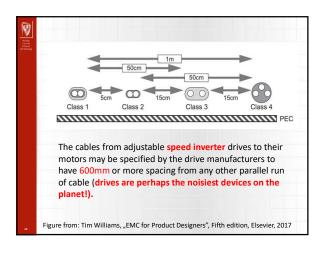


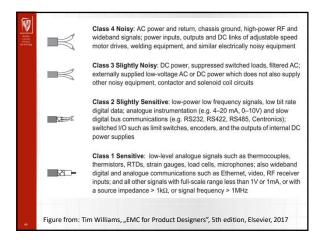


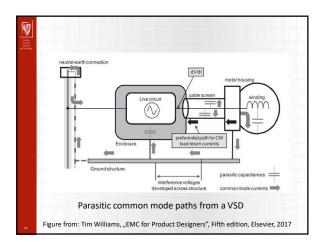


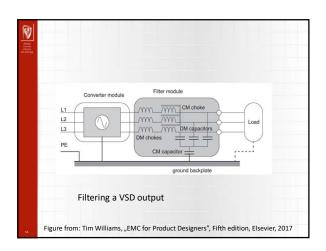


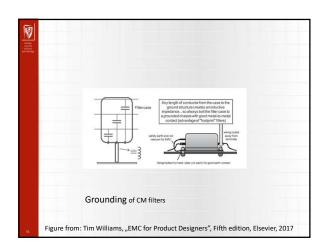


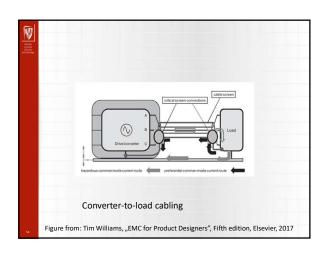


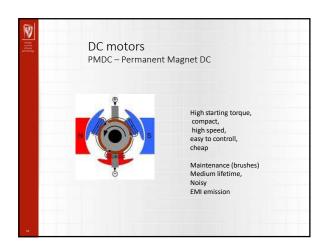


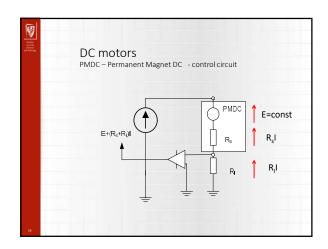


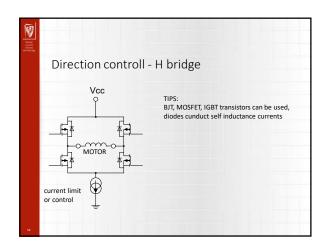


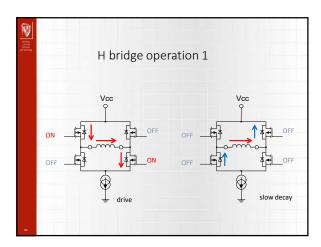


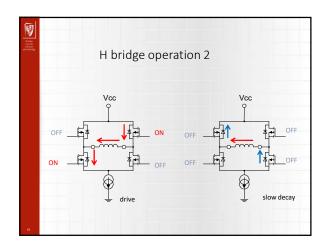


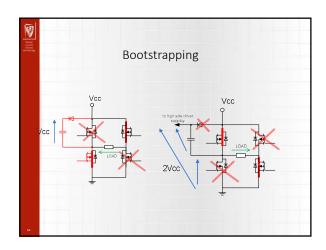




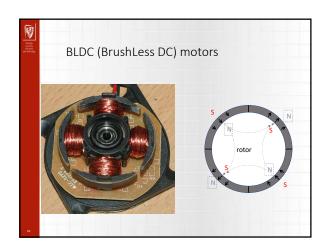


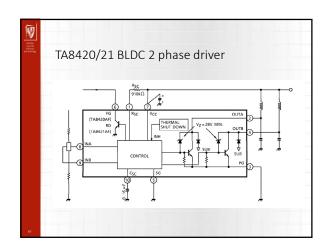


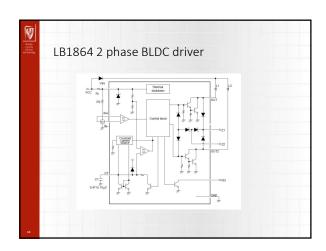

Туре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction (Shaded Pole)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
AC Induction (split-phase capacitor)	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 3ph	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/currer
Brushed DC	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Direct
	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

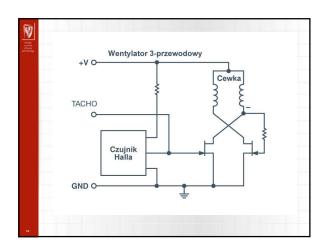


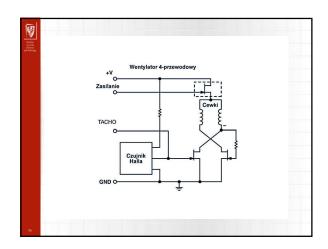


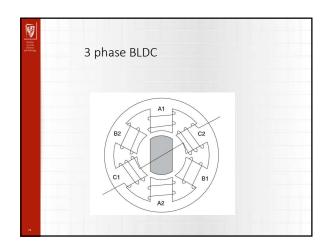


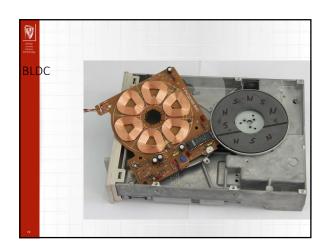


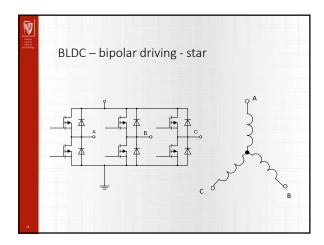


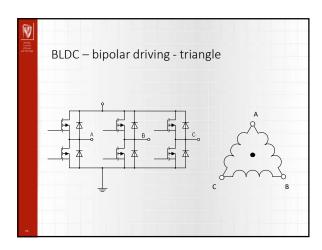

Туре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction (Shaded Pole) (31)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
AC Induction (split-phase capacitor (34)	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 3ph (40)	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/curre
Brushed DC (41)	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC (49)	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor (61)	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Direct
Stepper DC 1ph/2ph (66)	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
AC Synchronous (82)	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

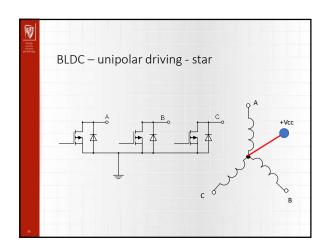




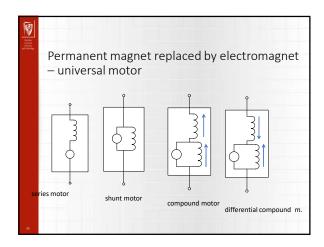


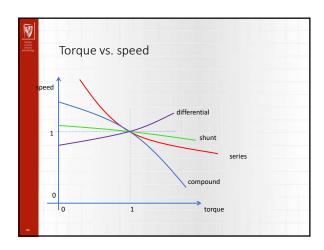


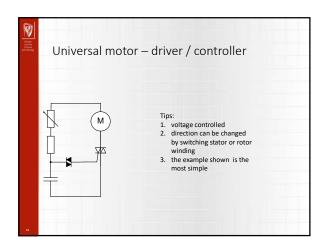


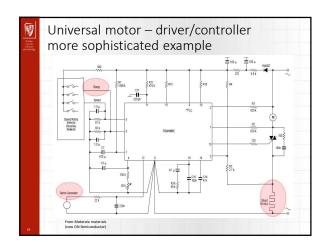




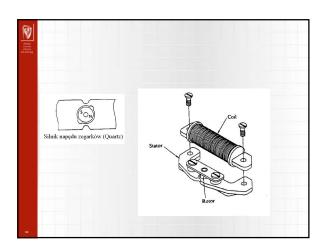


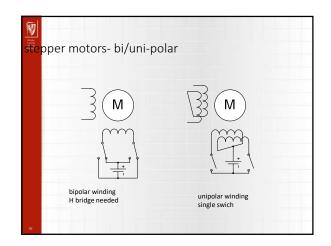


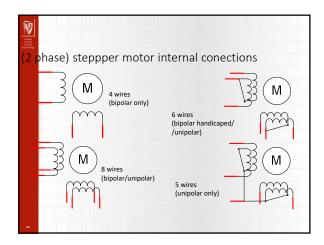


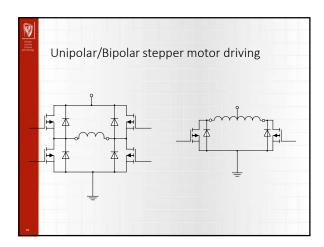


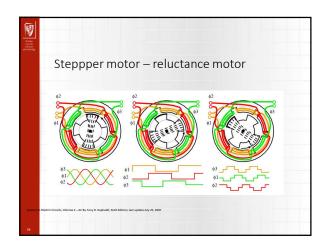
Туре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction (Shaded Pole)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
AC Induction (split-phase capacitor	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 3oh	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/cur
Brushed DC	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Dire
Stepper DC 1ph/2ph	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
AC Synchronous	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

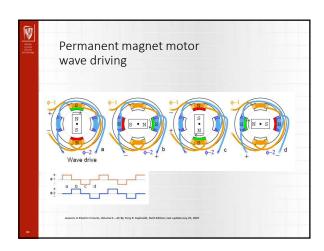


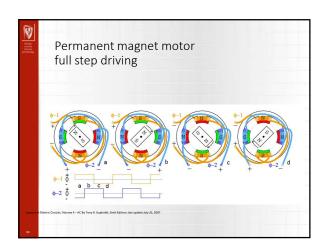


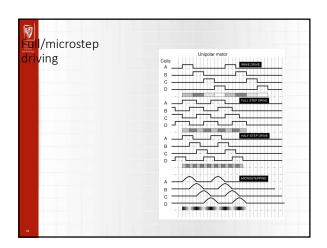


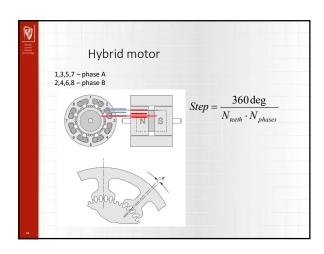


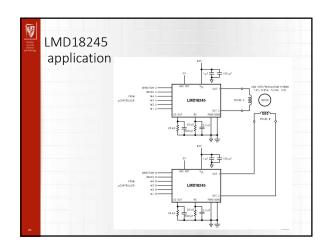

Туре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction (Shaded Pole)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
AC Induction (split-phase capacitor	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 3ph	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/cur
Brushed DC	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Dire
Stepper DC 1ph/2ph	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
AC Synchronous	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

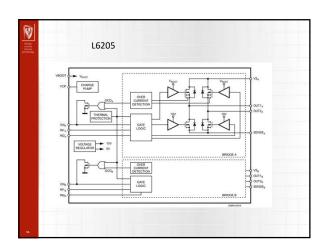


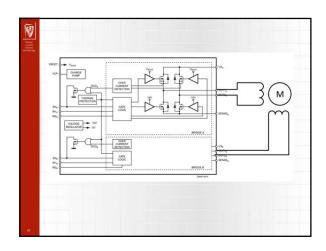


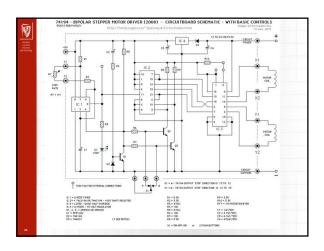


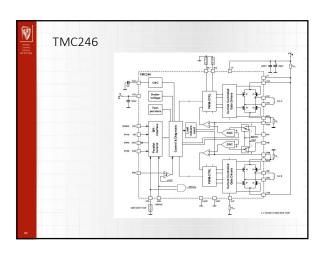


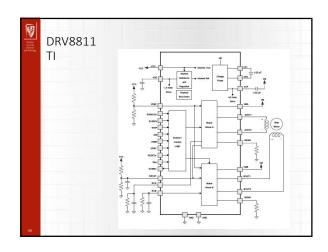


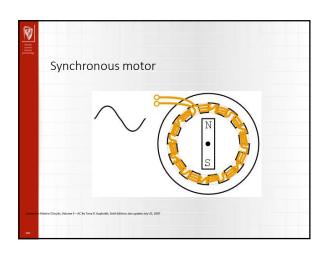


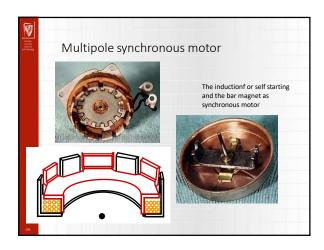












Гуре	Advantages	Disadvantages	Typical Application	Typical Drive
AC Induction Shaded Pole) 31)	Least expensive Long life lowpower	Rotation slips from frequency Low starting torque	Fans	difficult tocontrol
C Induction split-phase capacitor 34)	Medium power high starting torque	Rotation slips from frequency	Appliances Stationary Power Tools	Uni/Poly-phase AC
AC Squirrel cage 8ph (40)	High power	Rotation slips from frequency	Industry/ hp.mashines	Inverter frequency Vector controll (fr/current)
Brushed DC (41)	Low initial cost Simple speed control	Maintenance (brushes) Medium lifespan	Treadmill exercisers automotive motors (seats, blowers, windows)	Direct DC or PWM
BL DC (49)	Long lifespan low maintenance High efficiency	High initial cost Requires a controller	Hard drives CD/DVD players electric vehicles	DC switching, Pwm
Universal motor (61)	High starting torque, compact, high speed	Maintenance (brushes) Medium lifespan	Portable tools Grid powered	Uni-phase AC or Direct DI
Stepper DC 1ph/2ph (66)	Precision positioning High holding torque	High initial cost Requires a controller	Positioning in printers and floppy drives	DC switching
AC Synchronous 82)	Rotation in-sync with freq - hence no slip long-life	More expensive	Industrial motors Clocks Audio turntables tape drives	Uni/Poly-phase AC

